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A B S T R A C T   

Two new Holmium3+ and Ytterbium3+ compounds, {Ho(4cba)3(phen)(H2O)} (1) and {Yb(4cba)3(phen)} (2) 
(4cba = 4-Cyanobenzoic acid, phen = 1,10-Phenanthroline) were synthesized. These compounds were then 
incorporated into a Polyvinylpyrrolidone (PVP) matrix at different concentrations (5 wt% to 25 wt%) using an 
electrospinning technique, resulting in the formation of 1D luminescent composite fibers, Ho@PVP and 
Yb@PVP. The products were analyzed using various characterization techniques to determine their structures 
and morphologies. A comprehensive study was conducted to investigate the thermal and photoluminescence 
properties of these composite nanofibers in comparison to their pure compounds. The findings revealed signif-
icant enhancements in the photostability and thermal stability of the composite nanofibers due to the solid 
environment provided by PVP for the compounds. Furthermore, it was observed that the composite nanofibers 
exhibited notably superior the thermal-stability and the photo-stability when compared to their pure compounds.   

1. Introduction 

Lanthanide compounds have recently gained significant attention for 
their fundamental investigations and applications in various fields such 
as luminescent probes, drug delivery, optoelectronics, optical commu-
nications, and sensors [1–7]. These compounds exhibit emission bands 
resulting from f-f transitions [8], which have an extremely narrow 
bandwidth and therefore produce highly pure colors in emitted light 
[9,10]. Considering the fundamental emissive characteristics, Ho3+ ions 
play a crucial role as activator ions due to their broad photo-
luminescence (PL) spectrum, spanning from the visible to the infrared 
(IR) range, and their strong yellow emission. The efficient yellow 
emission of Ho3+ ions finds applications in diverse fields such as solid- 
state lighting devices, field emission displays, and security printing, as 
well as biological and sensing applications. Meanwhile, Yb3+ ions, 
which exhibit near-infrared (NIR) luminescence at approximately 980 
nm, are considered highly promising candidates with vast application 
prospects in the fields of bioanalytical research, telecommunications, 
and laser design systems [11]. 

In recent years, there has been growing interest in luminescent 
nanocomposites [12]. Various techniques, including self-assembly [13], 
solution casting [14], phase separation [15], melt blowing [16], and 
chemical methods [17], have been employed for the fabrication and 
synthesis of composite materials. Among these methods, electrospinning 
stands out as the simplest and most effective technique for producing 
continuous 1D hybrid composite fibers at the nanoscale [18]. By 
adjusting the electrospinning parameters, a wide range of structures can 
be achieved, including porous fibers, ribbon structures, wrinkled 
structures, beaded fibers, and others [19–22]. Electrospinning has been 
successfully used to obtain luminescent composite fibers with optical 
properties using various polymers such as polyvinyl alcohol (PVA), 
polyethylene oxide (PEO), polymethyl methacrylate (PMMA), and 
polyvinyl pyrrolidone (PVP) [23,24]. PVP, being a synthetic polymer, 
has garnered significant research interest due to its remarkable char-
acteristics. It exhibits high complexation ability, excellent hydrophilic-
ity, exceptional ultimate tensile strength, elasticity, corrosion resistance, 
and a strong affinity for water [25]. Additionally, PVP demonstrates low 
chemical toxicity and possesses reasonable solubility in both water and 
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most organic solvents, further adding to its appeal and versatility 
[26–30]. 

To the best of our knowledge, while numerous studies have explored 
the impact of various organic/inorganic dopants on the structural, 
electrical, and optical properties of PVP composite materials, limited 
research has been studied on the doping effect of rare earth ions. For 
instance, Li et al. demonstrated that a low content of Eu(TFI)3TPPO, 
ensuring proper dispersion within the PVP matrix, yielded significantly 
higher luminescence efficiency compared to pure Eu(TFI)3TPPO [31]. 
Zhang et al. demonstrated the preparation of Ag@SiO2@Eu(tta)3-

phenPVP nanoparticles using the electrospinning method. They found 
that the inclusion of PVP polymer created a favorable microenvironment 
that effectively stabilized the luminescent intensity of the Ag@SiO2@Eu 
(tta)3phen composites [32]. In a study conducted by Verlan et al., they 
utilized chemical methods to prepare a PVP/Eu(TTA)2(Phen3PO)2NO3 
nanocomposite. They indicated that this nanocomposite could create a 
relatively stable environment for lanthanide compounds, thereby 
enhancing their optical properties [33]. Bai et al., Eu2(BTP)3(H2O)4/PVP 
was produced using electrospinning. The research demonstrated that the 
PVP polymer matrix creates a stable chemical environment for Eu3+

compounds. The strong interaction between Eu2(BTP)3(H2O)4 and the 
PVP polymer matrix resulted in a significant enhancement in the lumi-
nescence intensity of Eu2(BTP)3(H2O)4/PVP compared to 
Eu2(BTP)3(H2O)4 [34]. In our previous study, we utilized electro-
spinning to prepare composite fibers comprising {[Dy(2-stp)2(H2O)6] 
0.2(4,4′-bipy) and {[Ho(2-stp)2(H2O)6]0.2(4,4′-bipy)0.5(H2O)} com-
pounds in PVP. Our findings revealed a substantial enhancement in both 
thermal stability and stable luminescence properties of the composite 
fibers compared to their pure compounds [35]. 

In this research, the photoactive composite fibers of {Ho(4cba)3(-
phen)(H2O)}@PVP and {Yb(4cba)3(phen)}@PVP were fabricated by 
incorporating the coordination polymers (at 10, 15, and 20 wt%) into 
the polymer matrix of PVP, taking advantage of electrospinning. The 
photoluminescence properties of these 1D composite fibers were 
extensively examined at room temperature and low temperature, and 
their performance was compared to that of their pure compounds. 

2. Experimental details 

2.1. Materials and physical measurements 

HoCl3⋅6H2O (99.9%, Sigma-Aldrich Co.), YbCl3⋅6H2O(99.9%, 

Fluorochem Ltd.), 1,10-Phenanthroline monohydrate (≥99%, Sigma- 
Aldrich Co.), 4-Cyanobenzoic acid (99%, Fluorochem Ltd.), Poly-
vinylpyrrolidone (PVP, Mw ~ 1,300,000 by LS, from powder, Sigma- 
Aldrich Co.) and ethanol (99.8%, Sigma-Aldrich Co.) were purchased 
from Sigma-Aldrich Co. and FluorochemLtd. and used as taken without 
further purification. Elemental analysis was executed on an Elementar 
Vario-EL-III microanalyzer. FT-IR spectral data were measured on a 
Perkin Elmer Spectrum 65 spectrophotometer equipment with ATR-Kit 
system in the range of 4000–600 cm− 1 at room temperature. Thermal 
stability was realized with a PerkinElmer TGA 4000 thermogravimetric 
analyzer. The SEM images were recorded using a FEI QUANTA 250 FEG, 
equipped with an energy-dispersive spectroscopy (EDX) system. The 
average diameter and the diameter size distribution of the composite 
fibers were obtained with Image J software from SEM images. The PL 
spectra were measured with an ANDOR SR500i-BL luminescence spec-
trometer equipped with a triple grating and detected by Intensified 
Charge Coupled Device (ICCD) camera as a detector for the visible re-
gion and InGaAs detector for NIR region. A frequency tripled Nd:YLFQ- 
switched pulse laser at 349 nm was used for the excitation source. 
Powder X-ray diffraction patterns were measured with a Philips PW- 
1710/00 diffractometer equipped with the Cu-Kα radiation (λ =
1.5418 Å) in the range 5◦ < 2θ < 50◦ in the θ–θ mode with a n s step (5 s 
< n < 10 s) and a step width of 0.03◦. 

2.2. Synthesis of {[Ho(4cba)3(phen)(H2O)]} (1) and {[Yb 
(4cba)3(phen)]} (2) 

All the coordination polymers were synthesized the same as reported 
in the earlier method [36,37]. Solution A: the mixture of 4cba (0.147 g, 
1.0 mmol) and phen (0.198 g, 1.0 mmol) in EtOH (10 mL) was prepared 
and Solution B: the mixture of HoCl3⋅6H2O (0.379 g, 1.0 mmol) for Ho 
(1), YbCl3⋅6H2O (0.387 g, 1.0 mmol) for Yb (2) and deionized water (10 
mL) was added dropwise to the above solution A under stirring and was 
adjusted by NaOH (1 mol/L) with pH≈6, and the final mixed solution 
continuous stirring was for at least 3 h at room temperature and then 
was sealed in a Teflon-line autoclave and heated at 100 ◦C for 3 d. After 
cooling to ambient temperature, the reaction solution was filtered and 
washed with cold EtOH several times and then dried at ambient tem-
perature. The resulting crystals of Ho (1) (Pink) and Yb (2) (yellow) 
crystals were obtained. Yield: 61% (based on Ho). Anal. calc. for 
C72H44Ho2N10O14 (%): C 43.95, H 8.77, N 6.74; Found: C 43.92, H 8.79, 
N 6.71. Yield: 64% (based on Yb). Anal. calc. for C72H40Yb2N10O12 (%): 

Scheme 1. Schematic presentation of the preparation of Ho@PVP and Yb@PVP nanofibers.  
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C 44.62, H 8.55, N 6.85; Found: C 44.58, H 8.58, N 6.81. 

2.3. Preparation of spinning solutions 

In a typical procedure, PVP was employed as the matrix material at a 
concentration of 15% (m/V) in the following steps: Briefly, 1,5 g of PVP 
was dissolved in 10 mL of EtOH solution, and the solution was stirred 
with a magnetic stirrer for homogeneity for 24 h at room temperature. 
Then, the different proportions of Ho (1) and Yb (2) compounds corre-
spond to 5 wt%–25 wt% (5, 10, 15, 20 and 25 wt%) respectively were 
added to PVP and stirred for another 12 h at room temperature for ho-
mogeneity and transparency (Scheme 1). 

2.4. Electrospinning process 

Electrospinning was carried out in the laboratory spinning unit 
(SPINGENIX SG-1) under a 13.5 kV by a DC high-voltage generator in 
horizontal alignment. The spinning solutions mentioned above were 
ejected using 5 mL plastic injectors equipped with a non-rust steel 
needle having an inner diameter of 0.8 mm. A fluid supply rate was set at 
2 mL/h and the distance between the collector and the needle tip was set 
at 20 cm. Randomly arranged nanofibers were assembled on an elec-
trically grounded aluminum foil. Next, the composite fibers were placed 
in a vacuum-drying oven at 40 ◦C for 12 h to remove the residual organic 
solvent. 

2.5. X-ray structure determination 

Suitable single-crystals Ho (1) and Yb (2) compounds were selected 
for data collection and performed on a Rigaku-Oxford XCalibur X-ray 
diffractometer at Room Temperature with EOS-CCD detector using 
graphite-monochromated MoKα radiation (λ = 0.71073 Å) with ω-scan 
mode. The processing of data was carried out in CrysAlisPro software. 
Crystal data collection, data reduction and analytical absorption cor-
rections were accomplished using the CrysAlisPro software v. 
1.171.41.93a [38,39]. Using Olex2 [40] as the graphical interface, the 
structures were solved by the ShelXS structure solution program, 
employing the Direct method [41]. The model was refined by full-matrix 
least-squares on F2 in SHELXL [42]. All non-hydrogen atoms were 
refined anisotropically and hydrogen atoms were added to the structure 
in idealized positions and further refined according to the riding model. 
Geometrical calculations were performed using PLATON software [43] 
and molecular graphics were generated using OLEX2 version 1.2.8. 
Table 1 summarizes the processes of the data collection and refinement 

of these compounds. The selected bond lengths and angles of Ho (1) and 
Yb (2) were shown in Table 2 and the hydrogen-bond geometry and π–π 
interactions were illustrated in Table 3. 

3. Results and discussion 

3.1. Crystal structure 

The single-crystal data derived from X-ray diffraction analysis shows 
that Ho (1) and Yb (2) are isostructural, crystallized in a triclinic system, 
P-1 space group, so we will explain Ho (1) for detailed structural 
discussions. 

3.2. {[Ho(4cba)3(phen)(H2O)]} (1) 

Single-crystal X-ray diffraction studies reveal that the crystal of Ho 

Table 1 
Crystal data and structure refinement information for Ho (1) and Yb (2).   

Ho (1) Yb (2) 

Chemical Formula C72H44Ho2N10O14 C72H40Yb2N10O12 

Formula w. (g mol¡1) 1603.03 1583.22 
Crystal system Triclinic Triclinic 
Space group P-1 P-1   

Unit cell dimensions 

a = 8.2353 (4) Å 
b = 12.7637 (6) Å 
c = 16.3563 (8)Å 
α = 98.033 (4)◦

β = 101.999 (4)◦

γ = 100.032 (4)◦

a = 9.8939(3) Å 
b = 11.7425(5) Å 
c = 15.0486(6) Å 
α = 111.396(4)◦

β = 96.416(3)◦

γ = 101.250(3)◦

V / Å3 1628.12(14) 1564.20(11) 
Z 1 1 
ρcalc / g cm¡3 1.635 1.681 
μ/mm¡1 2.488 3.046 
Temperature (K) 296 295 
Reflections collected 8913 18,532 
Independent reflections 6105 [Rint = 0.029] 6386 [Rint = 0.048] 
S 1.029 1.040 
R1 [I > 2σ(I)] 0.0370 0.0299 
wR2 [All Data] 0.0630 0.0587  

Table 2 
Selected bond lengths (Å) and bond angles (◦) of Ho (1) and Yb (2).   

1 2 

Bond lengths   
Ln-Ow 2.370(3)  
Ln-O4cba 2.278(3)-2.351(3) 2.231(2)-2.446(2) 
Ln-Nphen 2.546(3)-2.566(4) 2.492(3)-2.558(3) 
Bond Angles   
Ow-Ln-O4cba 72.91(12)-143.23(12)  
Ow-Ln-Nphen 73.61(12)-117.34(12)  
O4cba-Ln-O4cba 72.83(9)-145.56(10) 54.69(8)-147.61(9) 
O4cba-Ln-Nphen 68.83(11)-147.63(11) 71.25(8)-143.38(9) 
Nphen-Ln-Nphen 63.96(13) 65.11(9)  

Table 3 
Hydrogen-bond geometry (Å,◦).   

D – H⋅⋅⋅Aa D – H H⋅⋅⋅A D⋅⋅⋅A D – 
H⋅⋅⋅A 

Symmetry 

1 O(1) – H(1B) ⋅⋅⋅O 
(7) 

0.73 
(5) 

2.14 
(5) 

2.815 
(5) 

154 1 + x,y,z  

C(26) – H(26) ⋅⋅⋅N 
(1) 

0.93 
(3) 

2.57 
(3) 

3.408 
(7) 

150 1-x,1-y,-z 

2 C(35) – H(35) ⋅⋅⋅O 
(2) 

0.93 
(3) 

2.41 
(5) 

3.183 
(5) 

126 2-x,2-y,1-z  

Cg(I)⋅⋅⋅Cg(J)   Cg⋅⋅⋅ Cg    
Cg(1)⋅⋅⋅Cg(1)   4.724 

(3)  
1-x,1-y,1-z  

Cg(1)⋅⋅⋅Cg(2)   4.708 
(3)  

2-x,1-y,1-z  

Cg(1)⋅⋅⋅Cg(6)   3.815 
(3)  

1-x,1-y,1-z 

1 Cg(2)⋅⋅⋅Cg(2)   4.741 
(3)  

2-x,1-y,1-z  

Cg(2)⋅⋅⋅Cg(6)   3.658 
(3)  

2-x,1-y,1-z  

Cg(3)⋅⋅⋅Cg(4)   4.788 
(3)  

− 1 + x,y,z  

Cg(4)⋅⋅⋅Cg(5)   3.974 
(3)  

1-x,-y,1-z  

Cg(6)⋅⋅⋅Cg(6)   4.274 
(3)  

1-x,1-y,1-z  

Cg(1)⋅⋅⋅Cg(1)   3.707 
(2)  

1-x,1-y,1-z  

Cg(1)⋅⋅⋅Cg(6)   3.930 
(3)  

1-x,1-y,1-z 

2 Cg(2)⋅⋅⋅Cg(5)   4.988 
(2)  

1 + x,y,z  

Cg(3)⋅⋅⋅Cg(5)   4.294 
(3)  

1 + x,y,z  

a D: Donor, A: Acceptor, Cg(I): Plane Number I (=ring number in () above), Cg 
(1): N(4) –C(25) – C(26) – C(27) – C(28) – C(29); Cg(2): N(5) – C(30) – C(31) – C 
(34) – C(35) – C(36); Cg(3): C(2) – C(3) – C(4) – C(5) – C(6) – C(7); Cg(4): C(10) – 
C(11) –C(12) – C(13) – C(14) – C(15); Cg(5): C(18) – C(19) – C(20) – C(21) – C 
(22) – C(23); Cg(6): C(28) – C(29) – C(30) – C(31) – C(32) – C(33). 
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(1) contains a center-related dinuclear [Ho2(CO2)4] unit (Fig. 1a). The 
four carboxylate groups link a pair of Ho3+ atoms with Ho3+…Ho3+

distances of 4.401(9) Å, together in the CO2-bridging mode, produce a 
paddle-wheel-like centrosymmetric dimer. The Ho3+ atom is coordi-
nated by four O atoms from four bridging 4cba ligands, one O atom from 
a monodentate 4-cba, two N atoms from one chelating phen molecule, 
and one coordinated water molecule. These eight coordination atoms 
form a distorted square antiprism (Fig. 1b). The bond lengths of Ho–O 
and Ho–N range from 2.278(3)–2.370(3)Å and 2.546(3)–2.566(4)Å, 
respectively. The O–Ho–O/N bond angles are in the range of 68.83(11) 
to 147.63(11) and N–Ho–N bond angle is 63.96(13). All of the bond 
distances and bond angles are comparable to the reported Ho(1) com-
pounds [44–46]. The carboxylate groups are bound to the Ho3+ ions in 
three different coordination modes: a bidentate bridging mode in the 
syn-syn configuration, a bidentate bridging coordination mode in the 
syn-anti configuration and a common monodentate mode. To the best of 
our knowledge, Yan Li et al. co-workers have studied Ln3+(4cba)(phen)- 
like compounds [47] Sheybani et al. have studied fluoro-bridged 

Ho3+(FBA)3(2,2′-bipy) Metal − Organic Frameworks. According to 
this research, 2-FBA ions were bounded to the RE metal ions. As the 
organic linker H3BTB, which is in DMF, was modulated in a fluoro- 
bridged nonanuclear and trinuclear cluster MOF [48]. 

Meanwhile, the hydrogen bonds and π–π stacking interactions play 
an important role in the crystal packing and stabilization of Ho (1). 
Between the uncoordinated carboxylate O atom and the coordinated 
water molecule have been observed hydrogen bonding interactions, 
forming generate a 1D chained network along a-direction (Fig. 2). It is 
also surprising that in Ho (1), π–π stacking interactions exist 4cba-4cba, 
4cba-phen and phen-phen molecule rings, with the centroid-to centroid 
distances in the range of 3.974–4.788, 3.658–3.815 and 4.708–4.741 Å, 
respectively. These interactions help in strong layer packing and stabi-
lizing the framework structure. The strong packing of the layers stabi-
lized the layers and resulted in a permanent two-dimensional (2D) 
network parallel to the bc-plane (Fig. 3)[49,50]. 

Fig. 1. Representation of the molecular structure and coordination environment of Ho (1) (The hydrogen atoms were omitted for clarity).  

Fig. 2. A view of the 1D hydrogen-bonded of Ho (1), which is extended to an infinite chain along with the a-axis.  
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3.3. Powder X-ray diffraction and FTIR analysis 

The PXRD measures of synthesized compounds give important in-
formation about purity. The powder X-ray diffraction (XRD) patterns of 
Ho (1) and Yb (2) match well with those of simulated patterns (Fig. S1, 
see the SI). It is hence concluded that the phase purity of the two com-
pounds is high. 

To understand bond characteristics and chemical bond formations 
between the dopant and host polymer the Ho@PVP and Yb@PVP fibers 
(5 wt%–25 wt%), pure compounds and their precursors were analyzed 
by FTIR (Fig. 4). In general, the compounds and their nanofibers 
exhibited almost identical behavior in all spectra. Therefore, Ho (1), 
along with its fibers and free ligands, will be discussed in detail as 
representative examples. The FT-IR spectrum of Ho (1) revealed char-
acteristic absorption peaks of its organic ligands, 4cba and phen, in 
closely located regions. However, notable differences were observed 
between the IR spectra of the compounds and the free ligands. The cyano 
ν(C–––N) stretching vibration is observed at a similar frequency of 
approximately 2228 cm− 1, which is consistent with the absorption peak 
observed for the free 4-Hcba ligand. This indicates that the cyano group 
is not involved in coordination. The carboxylate vibration’s out-of-plane 
bending vibration, δ(O–H), observed at 928 cm− 1 in the free 4-Hcba 
ligand, disappears upon the formation of the compounds. This 

phenomenon can be attributed to the presence of intramolecular 
hydrogen bonding. One noteworthy feature observed in the IR spectra of 
the investigated compounds is the stretching vibration, ν(COO), of the 
carboxylate group. The asymmetrical stretching frequency, νasym(COO), 
of Ho (1) at 1637 cm− 1 closely resembles that of the free 4-Hcba ligand 
(1689 cm− 1) due to the presence of a short C–O bond. On the other 
hand, the symmetrical stretching frequency, νsym(COO), around 1409 
cm− 1 aligns with the presence of the COO– ion [51]. The weak absorp-
tion band observed in the range of 3052–3085 cm− 1 can be attributed to 
the ν(C–H) vibration, likely originating from the phen ligand [52]. The 
spectrum of Phen exhibits two peaks at 851 cm− 1 and 732 cm− 1, cor-
responding to the out-of-plane bending vibration of C–H, as well as two 
peaks at 1500 cm− 1 and 1414 cm− 1, corresponding to the stretching 
vibration modes of C––N and C–N. In the spectra of Ho (1), these peaks 
are slightly shifted, indicating the involvement of the Ho3+ -N stretching 
vibration [53–55]. Furthermore, the pure PVP polymer matrix exhibits 
four additional characteristic absorption bands. The asymmetrical 
stretching of CH2 and the bending of CH2 in the polymer backbone were 
detected at 2971 cm− 1 and 1428 cm− 1, respectively, which are indica-
tive of the PVP polymer matrix. A strong stretching band corresponding 
to carbonyl (C––O) was observed at 1660 cm− 1. Additionally, a vibration 
band at 1287 cm− 1 was observed, attributed to the stretching of (C–N) 
bonds. It was observed that all composite samples (Ho@PVP) containing 

Fig. 3. Projection view of the 2D molecular network parallel to the bc-plane of Ho (1).  

Fig. 4. FT-IR spectra of 4cba, phen and PVP (a) Ho (1) and Ho@PVP, (b) Yb (2) and Yb@PVP.  
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PVP exhibited a consistent IR band. Furthermore, the distinctive band of 
PVP at 1660 cm− 1, corresponding to the stretching band of C––O, was 
found to be slightly shifted to a lower wavenumber (1654–1650 cm− 1). 
This shift indicates the effective doping of Ho3+ compound within the 
PVP polymer matrix [35,56]. 

3.4. Morphology of analysis of composite fibers 

The SEM was used to examine the surface morphology of the 

electrospun products Ho@PVP and Yb@PVP, which contained varying 
concentrations of Ho (1) and Yb (2) compounds, in order to investigate 
their surface morphology. Figures 5 and S2(see the SI) display SEM 
micrographs and histograms of the Ho@PVP and Yb@PVP, respectively. 
The bottom-right inset of Fig. 5 and Figure S2 displays the histogram 
figures, showing the fiber diameters and their corresponding standard 
deviations in the SEM images. The average diameters of 1D composite 
fibers increased from 1.09 ± 0.39 μm (5 wt%) to 1.98 ± 1.09 μm (25 wt 
%) for Ho@PVP and 1.29 ± 0.52 μm (5 wt%) to 2.09 ± 0.79 μm (25 wt 

Fig. 5. A) sem images and size distribution and edx of optimized of Ho@PVP (20 wt%) and elemental mapping of the b) carbon (C), c) oxygen (O), d) nitrogen (N), e) 
holmium (Ho) and f) SEM images and size distribution and EDX of optimized of Yb@PVP (15 wt%), g)carbon (C), h) oxygen (O), i) nitrogen (N), j) ytterbium (Yb). 
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%) for Yb@PVP, respectively. According to the SEM histograms, the 
incorporation of Ho (1) and Yb (2) compounds into the PVP matrix 
increased the viscosity of the solutions and improved the electrical 
conductivity of the soluble materials. This increase in viscosity and 
conductivity led to the aggregation of fibers during the electrospinning 

process, resulting in larger fiber diameters [57]. SEM images of 
Ho@PVP and Yb@PVP composite fibers have provided almost nearly 
smooth surfaces, while a few fibers with relatively irregular and rough. 
Thus, the successful combination of Ho (1), Yb (2) compound and PVP 
polymer matrix was affirmed by the increase in the diameter of the 

Fig. 6. TGA curve of (a) Ho (1), (b) Ho@PVP, (c) Yb (2), (d) Yb@PVP.  

Fig. 7. The solid-state PL spectra of (a) Ho (1) and Ho@PVP composite fibers (5 wt% − 25 wt%) at room temperature (λexc = 349 nm), (b) Ho (1) and Ho@PVP 
composite fiber (20 wt%) with the possible 4f-4f transition. (c) Chromaticity coordinates of Ho (1) and Ho@PVP composite fiber. 
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composite fiber, which was proved in the SEM images. As a result, the 
doped Ho (1) and Yb (2) compounds are uniformly distributed around 
the fiber in the PVP matrix, recommending that it may be well 
compatible with PVP. 

Energy dispersive X-ray spectroscopy (EDX) is a commonly used 
technique for determining the elemental composition of a specific region 
within a sample. In this study, EDX was employed to confirm the ho-
mogeneous synthesis of Ho@PVP and Yb@PVP composite fibers. During 
the EDX analysis, specific regions of interest were examined, revealing 
peaks that correspond to the elements present in the host materials. The 
EDX results provided confirmation that the as-electrospun products 
consisted of C, O, N and the respective elements Ho (for Ho (1)) or Yb 
(for Yb (2)). The successful incorporation of Ho (1) and Yb (2) into the 
PVP matrix was clearly observed in the EDX spectrum, as depicted in 
Fig. 5. The prominent peaks corresponding to the elements present 
within the region of interest were identified. The atomic and weight 
percentages of the composite fibers were determined and are summa-
rized in the inset table of the EDX graph shown in Fig. 5. The presence of 
similar peaks in the spectrum indicates the formation of stable fibers 
with the correct atomic distribution, which is essential for subsequent 
optical and structural investigations [58]. Furthermore, these results 
provide support for the luminescence and structural analyses [59]. 

3.5. TGA analysis 

TGA is a common thermal analysis technique that is particularly 
useful for observing the thermal decomposition of organic–inorganic 
hybrid materials [60,61]. TGA of all samples was performed under a 
nitrogen atmosphere in the temperature range of room temperature to 
900 ◦C. Fig. 6 represents the TGA curves for the pure Ho (1) and Yb (2) 
compounds, pure PVP and their composite fibers. The results show that 
pure Ho/Yb compounds indicate almost similar thermal behaviours and 
exhibit several steps of weight loss. Ho (1) compound, the weight loss of 
3.1% was observed from room temperature to 150 ◦C, corresponding to 
the loss of one coordination water molecule and the structure is ther-
mally stable from 150 to 325 ◦C. As for Yb (2), it is immediately apparent 
that Yb (2) compound is thermally stable up to 325 ◦C. Both compounds 
undergo dramatic weight loss (Ho (1) 63.3% and Yb (2) 63.9%) in the 
temperature range of 325–620 ◦C, which could be attributed to the 
ligand decomposition and the coordination polymer framework begin-
ning to collapse. As a result, we speculate that the final residual weight 
likely originated from Ho3+/Yb3+ oxide [44,62]. 

As for the PVP matrix and Ho/Yb@PVP composite fibers, all samples 
have similar thermal properties. The TGA graphs show two-step weight 
loss patterns for the polymer fibers, which is the normal decomposition 

behaviour of PVP. At the preliminary stage of the phenomenon, the 
reduction of weight is initiated, which is due to the evaporation of water 
and environmental humidity. The second loss of mass in the samples 
occurred a drastic decrease at 350 ◦C, which is due to the degradation of 
the molecules’ large chains into small fragments and the weak head-to- 
head linkage at the terminal end. Moreover, the constant loss of weight 
noticed between 344 and 501 ◦C is due to the degradation of the PVP 
chains. However, with the addition of Ho (1) and Yb (2) compounds in 
the PVP matrix, where show degradation shifts to higher temperature 
degrees, which is attributed to the arrangement of polymeric chains near 
the compounds, which can raise heat dissipation. Ho@PVP and Yb@PVP 
composite fibers have increased thermal stability with an increase in the 
Ho/Yb concentration [63–65]. 

3.6. Photoluminescence properties 

Solid-State PL spectra of the free ligands (4cba and phen), PVP, Ho 
(1) and Yb (2) compounds as well as their composite fibers (Ho@PVP 
and Yb@PVP), were examined at room temperature using UV laser 
excitation at 349 nm in the visible and/or near-infrared (NIR) regions. 
The results are presented in Fig. S3, Fig. 7 and Fig. 8. The free ligand 
4cba exhibits indigo emission at 452 nm, accompanied by a minor 
shoulder attached to a broad band at 565 nm. On the other hand, the free 
ligand phen and the PVP polymer demonstrate a wide emission band at 
λmax = 440 and 497 nm, corresponding to blue light emission. These 
emissions can be attributed to the electronic transition of the n-π* or π-π* 
(ILCT) [52,66–69]. 

The PL spectrum of Ho (1) exhibits four distinct peaks centered at 
483, 575, 680, and 763 nm. These peaks correspond to the transitions 
5F3→5I8, 5S2(5F4)→5I8, 5F5→5I8 and 5S2(5F4)→5I7 of the Ho3+ ion, 
respectively (Fig. 7b). Among these peaks, the yellow emission peak at 
575 nm (5S2(5F4)→5I8) displays a sharp and intense profile compared to 
the green emission peak at 483 nm (5F3 →5I8) and the red emission peak 
at 680 nm (5F5→5I8). Consequently, the Ho (1) compound emits yellow 
light [70,71]. The PL spectra of Yb (2) are observed in the near-infrared 
(NIR) region, specifically at 980 nm (2F5/2 → 2F7/2), with a shoulder 
peak at 1070 nm (Fig. 7d) [72]. Yb (2) possesses the 2F5/2 state as its 
single excited state, which leads to luminescence through a spin-allowed 
transition of 2F5/2 → 2F7/2. The excited electrons transition from the split 
and energy-enhanced emissive state (2F5/2) to the ground state (2F7/2), 
resulting in the emission band at higher wavelengths (in the range of 
980–1100 nm). The luminescent behavior is influenced by the ligand- 
field around the Yb3+ ion, which causes crystal splitting and conse-
quently leads to a broad emission spectrum. 

Based on the observations presented in Fig. 7a, Fig. 8a, and Fig. 8b, 

Fig. 8. (a) The solid-state PL spectra of Yb (2) and Yb@PVP composite fibers (5 wt%-25 wt%) at room temperature (λexc = 349 nm), (b) The dependence of 
compounds and their composite fibers emission intensity as a function of the Ho3+/Yb3+ content. 
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the PL emission intensities reach their maximum at a doping concen-
tration of 20 wt% for Ho (1) and 15 wt% for Yb (2). The subsequent 
decrease in intensities at higher concentrations of Ho3+ and Yb3+ can be 
attributed to a phenomenon known as concentration quenching. This 
phenomenon is characterized by a high rate of cross-relaxation between 
luminescent centers, as well as energy transfer to hydroxyl-like ions, 
defect structures, and other exchange interactions. These non-radiative 

processes contribute to the decrease in the PL emission intensity 
[73–75]. 

The chromaticity coordinates of the Ho (1) and its composite fibers 
(5 wt%-25 wt%) were determined using the emission data shown in 
Fig. 7c and the calculated CIE values in Table 4, following the guidelines 
of the Commission Internationale de l’Eclairage (CIE). The calculated 
CIE chromaticity coordinates for the optimized composite fiber are x =
0.457 and y = 0.463. The correlation color temperature (CCT) values 
were calculated using McCamy’s empirical formula (equation 1) [76]. 
CCT serves as a measure of the quality of a light source and provides an 
indication of whether the light appears cool, neutral, or warm in nature. 

CCT = –449n3 + 3525n2 – 6823.3n + 5520 (1). 
where, the slope line (n) is defined as n=(x-xe)/(y-ye), where × and y 

represent the CIE coordinates, and the chromaticity epicenters are given 
as xe = 0.332 and ye = 0.185. In general, when the correlated color 
temperature (CCT) of a lamp is above 4000 K, it is perceived to emit cool 
light, whereas a CCT below 3200 K is associated with warm light. The 
calculated CCT values are provided in Table 4. Considering the given 

Table 4 
The CIE coordinates and CCT values of Ho (1) and Ho@PVP composite fibers (5 
wt%-25 wt%).  

Ho@PVP(xHo wt.%) CIE chromaticity coordinates (x,y) CCT value (K) 
Ho(1) 0.449 0.454 3173.44 

Ho@PVP (5 wt%)  0.451  0.456  3156.58 
Ho@PVP (10 wt%)  0.453  0.458  3140.71 
Ho@PVP (15 wt%)  0.456  0.460  3110.22 
Ho@PVP (20 wt%)  0.457  0.463  3115.42 
Ho@PVP (25 wt%)  0.459  0.466  3106.26  

Fig. 9. Low-Temperature PL spectra of (a) Ho@PVP (20 wt%) and (c) Yb@PVP (15 wt%), the integral emission profiles of (b) Ho@PVP (20 wt%) and (d) Yb@PVP 
(15 wt%), (e) the chromaticity coordinates of the Ho@PVP (20 wt%) for the low-temperature analysis (λexc = 349 nm). 
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information, it can be observed that the color coordinates (x, y) for all 
Ho@PVP composite fibers fall within the yellow region. The low CCT 
values and the positioning of the color coordinates validate the potential 
of the prepared hybrid materials to be regarded as promising yellow 
luminescent materials [77–79]. 

3.6.1. Luminescence temperature quenching behavior of composite fibers 
Temperature-dependent photoluminescence (PL) analysis plays a 

crucial role in understanding the optical properties of materials. Low- 
temperature measurements are particularly significant as they reveal 
spectral details that may not be apparent at room temperature due to 
thermal expansion effects. At cryogenic temperatures, electronic tran-
sitions from the ground state to different vibrational levels result in the 
emergence of excited states, allowing for the observation of fine struc-
tures in the PL spectra [80]. Given the significance of this analysis, the 
temperature-dependent PL spectra were recorded for Ho@PVP (20 wt%) 
and Yb@PVP (15 wt%) composites across a temperature range of 
300–10 K. The corresponding spectra can be seen in Fig. 9(a-d). As 
depicted in the Figures, the intensity of the characteristic emission peaks 
of Ho@PVP and Yb@PVP exhibits a gradual decrease with the rise in 
temperature, which can be attributed to thermal quenching. It is worth 
mentioning that no new spectral bands associated with singlet radiative 
transitions were observed at low temperatures. This observation is likely 
attributed to the low thermal activation barrier for singlet–singlet non- 
radiative transitions [81,82]. Additionally, to investigate the impact of 
temperature on the emission color of the Ho@PVP (20 wt%) composite 
fiber, the CIE coordinates were calculated using the temperature- 
dependent emission spectra and plotted on the CIE chromaticity dia-
gram (Fig. 9e). The emission color of the composite fiber was found to be 
minimally affected by temperature. The correlation color temperatures 
(CCT) values, calculated using McCamy’s empirical formula, along with 
the chromaticity coordinates, are presented in Table 5 [83]. 

4. Conclusion 

In summary, new Ho@PVP and Yb@PVP composite fibers were 
prepared by electrospinning, which demonstrated intense photo-
luminescence under ultraviolet excitation. The diameters of the com-
posite fibers were increased in the range of 1.09–2.09 μm by changing 
the concentrations of Ho (1) and Yb (2). Owing to incorporating a 
polymer with good mechanical strength, thermal-stability and high 
dielectric constant desirable for electrospinning, the thermal and pho-
tostability of the composite nanofibers were much better than those of 
the pure compounds. The PVP polymer provides a rigid environment to 
protect the pure Ho/Yb compounds from decomposing under UV irra-
diation and high temperature. It is found that the PL spectra of the 
Ho@PVP composite fibers exhibit intense characteristic emissions from 
the Ho+3 ion, resulting in the emission of yellow light. The low CCT 
values and the positioning of the color coordinates affirm the potential 

of Ho@PVP hybrid materials as promising yellow luminescent mate-
rials. Furthermore, the Yb@PVP composite fibers demonstrate intense 
characteristic emissions from the Yb+3 ion in the NIR region, specifically 
at 980 nm with a shoulder peak at 1070 nm [84–87]. The PVP-supported 
hybrid materials possess high thermal stability and good film-forming 
properties, while the efficient Yb3+-centered NIR luminescence opens 
up new possibilities for hybrid materials in future optoelectronic device 
applications. 
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Salem, X. Mateos, Structure and luminescent properties of Dy3+ activated NaLa9 
(SiO4)6O2 yellow-emitting phosphors for application in white LEDs, J. Alloys 
Compd. 896 (2022), 163109. 

[79] W. Li, G. Fang, Y. Wang, Z. You, J. Li, Z. Zhu, C. Tu, Y. Xu, W. Jie, Luminescent 
properties of Dy3+ activated LaMgAl11O19 yellow emitting phosphors for 
application in white-LEDs, Vacuum. 188 (2021), 110215. 

[80] A. Mondal, J. Manam, Structural, optical and temperature dependent 
photoluminescence properties of Cr3+-activated LaGaO3 persistent phosphor for 
optical thermometry, Ceram. Int. 46 (15) (2020) 23972–23984. 

[81] Y.A. Kuznetsova, D.A. Zatsepin, A.F. Zatsepin, N.V. Gavrilov, Temperature- 
dependent luminescence of intrinsic defects and excitons in nanocrystalline 
monoclinic Y2O3 films, J. Lumin. 250 (2022), 119102. 

[82] L. Wu, H. Zhang, W. Zheng, X. Zhang, H.J. Seo, Temperature dependent of 
luminescence and decay behavior of Eu2+ in NASICON-type phosphate 
CaZr4(PO4)6, Mater. Res. Bull. 93 (2017) 245–250. 

[83] H.-J. Woo, M. Jayasimhadri, K. Jang, Abnormal temperature dependent 
luminescence behavior of CaSrSiO4:Eu2+ phosphors synthesized via sol-gel 
strategy, J. Alloys Compd. 703 (2017) 80–85. 

[84] W. Huang, D. Wu, D. Guo, X. Zhu, C. He, Q. Meng, C. Duan, Efficient near-infrared 
emission of a Ytterbium(III) compound with a green light rhodamine donor, Dalt, 
Trans. (12) (2009) 2081. 

[85] F.R. Gonçalves e Silva, O.L. Malta, C. Reinhard, H.-U. Güdel, C. Piguet, J.E. Moser, 
J.-C.G. Bünzli, Visible and Near-Infrared Luminescence of Lanthanide-Containing 
Dimetallic Triple-Stranded Helicates: Energy Transfer Mechanisms in the SmIII and 
YbIII Molecular Edifices, J. Phys. Chem. A. 106 (2002) 1670–1677. 

[86] S.A. Bhat, K. Iftikhar, Synthesis and NIR photoluminescence studies of novel Yb(III) 
complexes of asymmetric perfluoryl β-diketone, J. Lumin. 208 (2019) 334–341. 

[87] Y.-X. Chi, Y.-J. Liu, Y. Li, R. Wang, J. Jin, G.-N. Zhang, S.-Y. Niu, Syntheses, 
structures and near-infrared luminescent properties of a series of Ln(III) 
coordination polymers, J. Mol. Struct. 1018 (2012) 122–130. 

F. Kuru et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0277-5387(23)00214-0/h0335
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0335
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0340
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0340
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0340
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0345
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0345
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0345
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0350
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0350
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0350
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0355
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0355
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0355
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0360
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0360
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0360
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0360
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0365
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0365
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0365
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0365
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0370
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0370
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0370
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0370
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0375
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0375
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0375
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0380
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0380
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0385
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0385
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0385
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0390
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0390
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0390
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0390
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0395
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0395
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0395
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0400
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0400
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0400
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0405
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0405
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0405
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0410
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0410
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0410
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0415
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0415
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0415
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0420
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0420
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0420
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0430
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0430
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0435
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0435
http://refhub.elsevier.com/S0277-5387(23)00214-0/h0435

	Improved photoluminescence properties of one-dimensional (1D) composite fibers of Ho@PVP and Yb@PVP prepared by electrospinning
	1 Introduction
	2 Experimental details
	2.1 Materials and physical measurements
	2.2 Synthesis of {[Ho(4cba)3(phen)(H2O)]} (1) and {[Yb(4cba)3(phen)]} (2)
	2.3 Preparation of spinning solutions
	2.4 Electrospinning process
	2.5 X-ray structure determination

	3 Results and discussion
	3.1 Crystal structure
	3.2 {[Ho(4cba)3(phen)(H2O)]} (1)
	3.3 Powder X-ray diffraction and FTIR analysis
	3.4 Morphology of analysis of composite fibers
	3.5 TGA analysis
	3.6 Photoluminescence properties
	3.6.1 Luminescence temperature quenching behavior of composite fibers


	4 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


