Electrospinning of nanofibers - Spingenix

SpingenixArchives

Electrospinning nanofibers

Electrospinning nanofibers. Chitosan [poly(b-1/4)-2-amino-2-deoxy-D-glucopyranose] is a polycationic property that has a partial or total effect by incorporating chitin into the cell wall of oysters and some fungi will. Deacetylation in alkaline medium is a biopolymer. Many researchers have found that chitosan is often preferred in biomedical applications due to its biocompatibility, biodegradability, non-toxicity, potential for cell adhesion and proliferation, antimicrobial activity, and its aid in rapid wound healing. However, chitosan can be produced in the form of powder, gel, foam, film, fiber and thread and used in many different forms in many fields (Tikhonov et al., 2006; Peter, 1996; Rao and Sharma, 1994; Rinaudo, 2006) . It is one of the synthetic polymers with mechanical and physical properties, biocompatible and biodegradable.

Electrospinning nanofibers

It is generally obtained by ring-opening polymerization of “ε-caprolactam”. It has a very wide range of uses, especially in the textile industry. Electrospinning can be briefly defined as the production of submicron fineness fibers by the application of electrostatic forces to a polymer solution or melt. This method includes operational steps such as (i) charging the solution with electric charges (ii) Taylor coning (iii) diluting the polymer jet by instability (whiplash instability) in the electric field (iv) diluting, collecting and solidifying. The polymer jet is converted into fibers on the collection mechanism.

Diameter and morphology of fibers obtained by electrospinning processes, solution properties (viscosity, conductivity, molecular weight and polymer concentration, surface tension, type of solvent), process parameters (electric field strength, distance between feeder and collector, feed amount of solution) and environmental conditions (temperature, humidity) (Chong et al., 2007; Lee et al., 2004). It can be seen that the academic and industry interest in the electrospinning method has increased in recent years as it allows the use of simple and efficient nanofibers. Production of natural and synthetic polymers

Nanofiber-based structures are considered as potential materials, due to their high surface-to-volume ratio, high porosity, and very small pore size (Li and Xia, 2004) As the surface tension increases sharply, electrostatic attraction is said to cause various problems. To overcome this problem, smooth nanofibers can be obtained by blending various polymers.

The chitosan (CS) produced at 2% by weight was dissolved homogeneously in 90% strength acetic acid with stirring for 24 h at room temperature. For 7 hours, homogeneous solution, electrogravity tests were performed. The solutions were mixed using a magnetic stirrer (Stuart, SB 162) for two hours at room temperature. The pH of the prepared solutions was determined using indicator cards (indicator strips, Merck) and their viscosity values. Their conductivity was determined using a Brookfield viscometer (DV-E viscometer). It was measured with a WTW brand device (Cond 3110). A spindle of the type S21 with a rotation of 30 rpm was used for viscometer measurements.

The electrospinning process was performed using a laboratory machine (NanoFMG, NS24) designed on the principle of vertical work. Each solution was transferred to syringes with a volume of 10 ml and introduced into an aluminum foil-covered cylindrical manifold using a 20-gauge delivery unit (nozzle), and the amount of the feed solutions was measured in an electric field of 0.50 ml/hour definitely. And the distance was adjusted to 15 cm. A voltage of 34 kV was applied in electrogravity experiments. Alternating current (AC) was used to create the electric field. The experiments were carried out at a relative humidity of 35-42% and at variable temperatures between 26-31 degrees Celsius.

The polycationic nature of chitosan and the strong intramolecular and intermolecular interactions in its chemical structure create significant problems in the electrospinning process. Strong hydrogen bonds prevent the free movement of polymer chain blocks in the electric field and lead to nozzle cracking during the electrospinning process [Li and Hsieh, 2006; Desai and Keith, 2008). In addition, the repulsive forces between the ionic groups in the polymer chain sufficiently prevent entanglement (entanglement) of the polymer chains. This prevents the formation of sufficient and continuous fibers during stretching, bending and impact instability of the polymer jet. These problems result in the formation of globules or irregular beaded fibers during the elongation of the polymer stream rather than the formation of regular fibers as a result of the electrospinning process.

Climate Controlled Electrospinning

Climate controlled electrospinning. What about those shoelaces you always use to tie your shoes? Imagine them in millions of smaller versions. Do you think? So now you know something about nanofibers :)) Materials called nanofibers are made up of threads so thin that their thickness can be expressed in nanometers. It has different areas of application. With the nanofiber method, for example, the surface can be increased enormously, depending on the material used, either a selectively permeable membrane or a superhydrophobic surface.

Electrospinning of nanofibers and their applications for energy devices

This is a definition that anyone can understand, but not enough for those who want details. Those who want to get detailed information in this field (about nanofiber production and its production method, electrospinning method, HEPA filter nanofiber membrane, textile soundproofing materials with antibacterial performance, etc.) can get it from spingenix.com, The first and only . A group that does it industrially in Turkey.

Climate Controlled Electrospinning

Nanofibers, nanofibers, are fine fibers with mean fiber diameters in the nanometer range (nm = 9-10 m), which correspond to about one-thousandth of a human hair. For fibers in general, the term “nano” provides information about the diameter size of the fibers. Today, “fibers one micron in diameter and smaller” are called nanofibers because fibers one micron in diameter or smaller cannot be produced with current fiber manufacturing processes. One of the newest technologies developed for the production of these fibers is the process of electrical manufacture (electrospinning). In general, many applications show that the nanofibers under investigation will soon find their way into many areas of life. The electrospinning process is the most efficient and simplest method to produce polymer-based nanofibers. It is also possible to produce nanofibers using special spinning processes and gas vapor growth processes.

They are fibers less than a micron in diameter that, unlike normal fibers, cannot be seen individually with the naked eye and can be manufactured in a porous paper-like membrane structure. Membrane structures made from nanofibers have unlimited uses with various mechanical and chemical modifications. Air and liquid filters, medical and energy applications, high-performance fabrics are just a few of them. Although there are many methods for its production, the most suitable and widespread marketing method is electrospinning. Although the price per kilo varies depending on the application, it is around 20,000 tomans, but the production costs are incomparably lower than this price. Measured as it is, we will encounter it in many areas in the future. The production of nanofibers by electrospinning is still being studied at almost all universities in our country.

Electrospinning Environment

Nanofibers are fibers as thin as a thousandth of a human hair. Areas of application are medical textiles, bandages, outerwear. Among the methods for obtaining nanofibers, electrospinning is distinguished by its simple and inexpensive structure and short processing time. While the fabrication of nanofibers from synthetic materials by electrospinning is widespread, interest in the fabrication of nanofibers based on biopolymers has increased in recent years. For this reason, the rheological and conductivity properties of chickpea flour, lentil flour, soy protein and hydroxypropylmethylcellulose (HPMC) solutions prepared in different concentrations were first measured. Then, the prepared solutions were subjected to electrospinning under various conditions.

Optimal solution concentration and electrospinning parameters were determined considering the homogeneity of the nanofibers. Electrospun nanofibers are an advantageous option for active packaging due to their high surface-to-volume ratio. His goal in this project is to reduce the oxidation rate of food through active packaging with antioxidants. To this end, different ratios of gallic acid were successfully encapsulated in chickpea flour, lentil flour, soy protein, and hydroxypropylmethylcellulose-based nanofibers by electrospinning methods. The gallic acid loading efficiency and antioxidant capacity of the obtained homogeneous nanofibers were determined, and nanofibers with high efficiency and high antioxidant content were used for packaging nuts. As a result of the rapid oxidation test, it was found that the nuts packed with nanofibers containing gallic acid had a lower oxidation value than the nuts in the control group. Therefore, the preparation of gallic acid-containing nanofibers based on biopolymers was successfully carried out and the use of the obtained nanofibers as an active packaging material was proposed.